109 research outputs found

    Wood polymer composites and their contribution to cascading utilisation

    Get PDF
    Due to a shortage of resources and a growing competition of land use, sustainable and efficient resource utilisation becomes increasingly important. The application and multiple, cascading utilisation of renewable resources is aimed at to ensure an allocation and future availability of resources. Wood polymer composites (WPCs) are a group of innovative materials consisting of mainly renewable resources. By means of summarizing recent research, it is shown how WPC can potentially contribute to an enhanced cascading utilisation. For the production of WPC, waste materials and by-products from wood and agricultural industry, e.g. offcuts, sawdust, residues from board manufacturing, pulping sludge, can serve as a raw material. Furthermore, the cited literature presents the use of recycled polymers and biopolymers as a potential alternative for the polymer component of WPC. By using biodegradable polymers, a fully biodegradable composite can be formed. In addition to using recycled materials and potentially being biodegradable, it is pointed out that WPC furthermore offers the possibility of being recycled itself, therefore being considered as a “green composite”. Although the influence of contaminated waste streams and mixed filler and polymer types on the properties of WPC made with such recyclates is yet not fully understood and no collection systems exist for post-consumer WPC, in-house recycling on the production sites is identified as a promising option as it reduces production costs and enhances resource efficiency and cascading utilisation. On the basis of cited life cycle assessments, the eco friendliness of WPC is assessed resulting in the conclusion that WPC cannot compete with solid wood with respect to environmental impact but is an environmentally friendly alternative to neat plastics in several applications

    Distribution of blue stain in untreated and DMDHEU treated Scots pine sapwood panels after six years of outdoor weathering

    Get PDF
    International audienceSurface coating and bulk treatment of wood are two effective measures which can, individually or conjointly, protect exterior wood from deterioration. This paper reports on the blue stain attack in coated wood, untreated and modified with DMDHEU, after six years of natural exposure

    Fizička i mehanička svojstva toplinski modificiranog drva Eucalyptus nitens za vanjske podne obloge

    Get PDF
    Eucalyptus nitens is a fast growing plantation species that has a good acclimation in Spain and Chile. At the moment it is mainly used for pulp and paper production, but there is a growing market for solid wood products made from this species. Thermal modification offers a good alternative to produce high quality material to manufacture products with high added value. This study used unmodified and thermally modified E. nitens wood from Spanish and Chilean plantations to elaborate external decking and examine if it complies with the necessary properties to be a competitive product. A process similar to ThermoWood® was applied at the following temperatures: 185 °C, 200 °C and 215 °C. For each modification and for an unmodified specimen mass loss, volumetric swelling, anti-swelling efficiency (ASE) and equilibrium moisture content (EMC) were determined. Brinell hardness, dynamic hardness, screw and nail withdrawal resistance, and abrasion resistance according to the Shaker method and the Taber Abraser method were also determined. According to this study, thermally modified E. nitens from both countries showed high potential to be used as decking material, particularly when modified at 200 °C.Eukaliptus nitens brzo je rastuća plantažna vrsta koja se dobro prilagodila klimi u Španjolskoj i Čileu. Trenutačno se uglavnom iskorištava za proizvodnju celuloze i papira, ali sve je veće tržište proizvoda izrađenih od masivnog drva te vrste. Toplinskom modifikacijom dobiva sa dobra alternativa za proizvodnju visokokvalitetnih proizvoda s visokom dodanom vrijednošću. U ovom je istraživanju kao materijal za vanjske podne obloge upotrijebljeno nemodificirano i toplinski modificirano drvo E. nitens sa španjolskih i čileanskih plantaža te je ispitana njegova sukladnost sa svojstvima potrebnima za postizanje konkurentnosti. Primijenjen je postupak sličan procesu ThermoWood®, i to pri temperaturama 185, 200 i 215 °C. Za svaki modificirani i nemodificirani uzorak određen je gubitak mase, volumno bubrenje, učinak smanjenja bubrenja (ASE) i ravnotežni sadržaj vode (EMC). Određene su i tvrdoća prema Brinellu, dinamička tvrdoća, otpornost na izvlačenje vijaka i čavala te otpornost na habanje prema metodama Shaker i Taber abraser. Na temelju ovog istraživanja može se zaključiti da su toplinski modificirani uzorci drva E. nitens iz obje zemlje pokazali visok potencijal za uporabu u obliku vanjskih podnih obloga, posebice ako su modificirani pri 200 °C

    Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 2: Aspects of microtensile strength and chemical changes

    Get PDF
    The biotechnological application of the white rot fungus Physisporinus vitreus named "bioincising” is currently being investigated for permeability improvement of Norway spruce (Picea abies (L.) Karst.) wood. During short-term (<9weeks) incubation, fungal activity induces degradation of pit membranes and a simultaneous alteration of the tracheid cell wall structure. In Part 1 of this article series, the occurrence of selective delignification and simultaneous degradation was shown by UV-microspectrophotometry (UMSP). Moreover, significant reduction of Brinell hardness was recorded after 7 and 9weeks incubation. For a better understanding of the chemical alterations in the wood constituents and the corresponding changes of mechanical properties due to fungal activity, we applied microtensile tests on thin strips that were prepared from the surface of incubated Norway spruce wood. Indications for the occurrence of selective delignification and simultaneous degradation were evident. Determination of lignin content and carbohydrate analysis by borate anion exchange chromatography confirmed the results. The present study verifies the findings from Part 1 of this article series and from previously conducted microscopic investigations. Now, the degradation characteristics of P. vitreus are established and the bioincising process can be further optimized with higher reliabilit

    Assessment of wood microstructural changes after one-stage thermo-hydro treatment (THT) by micro X-ray computed tomography

    Get PDF
    The microstructural changes in a selection of softwoods and hardwoods resulting from thermo-hydro treatment (THT) at 160°C were examined by means of a state-of-the-art micro X-ray computed tomography. A dedicated X-ray scanning and volumetric processing protocol was developed. All reconstructed volumes had an approximate voxel pitch between 0.8 and 1.2 μm3. The microstructures of the same needle-shaped specimens before and after THT were visualized, and the individual parameters (maximum opening and lumen volume) for various cell types were quantified and compared. The highest values of substance volume were recorded for the ash sapwood (81%) and spruce specimens (72%). After THT, a significant correlation was found between the mass loss determined by gravimetry and the X-ray volume loss. The largest change occurred in the lumen volume of several tissue components, such as libriform fibers, tracheids, and ray parenchyma. The average aspen fiber volume reduction after THT was 31%, a value 2.6 times higher than the volume reduction of the average vessels. The porosity of ash sapwood increased from 41 to 56%, whereas the porosity of birch decreased from 34 to 29%

    Mechanical Properties Of Chemically Modified Portuguese Pinewood

    Get PDF
    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated.Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5-dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane  and wax. The following mechanical properties were assessed experimentally: Modulus of elasticity measured statically, stiffness stabilization efficiency in different climates (30 and 87% of relative humidity), modulus of rupture, work maximum load, impact bending strength, compression, tensile and shear strength at indoor conditions (65% of relative humidity).In both types of active principle of modification, cell wall or lumen fill, no significant changes on the bending stiffness (modulus of elasticity) were found. In the remaining properties analysed significant changes in the modified wood-material took place compared to unmodified wood control:- Cell wall modification was the most effective method to achieve high stiffness stabilization efficiency (up to 60%) and also increased compression strength (up to 230%). However, modulus of rupture, tensile, shear and the impact bending strength  were reduced by both resins, but in a varying extent, where the N-methylol melamine formaldehyde endured less reduction than 1,3-dimethylol-4,5-dihydroxyethyleneurea resin. In the latter, reduction up to 60% can take place.- In the lumen fill modification: tetra-alkoxysilane  has no effect in the mechanical properties. Although, a slight increase in shear strength parallel to the grain was found. Wax specimens have shown a slight increase in bending strength, compression, tensile and shear strength as well as in the absorption energy capacity

    Mechanical Properties Of Chemically Modified Portuguese Pinewood

    Get PDF
    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated.Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5-dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane  and wax. The following mechanical properties were assessed experimentally: Modulus of elasticity measured statically, stiffness stabilization efficiency in different climates (30 and 87% of relative humidity), modulus of rupture, work maximum load, impact bending strength, compression, tensile and shear strength at indoor conditions (65% of relative humidity).In both types of active principle of modification, cell wall or lumen fill, no significant changes on the bending stiffness (modulus of elasticity) were found. In the remaining properties analysed significant changes in the modified wood-material took place compared to unmodified wood control:- Cell wall modification was the most effective method to achieve high stiffness stabilization efficiency (up to 60%) and also increased compression strength (up to 230%). However, modulus of rupture, tensile, shear and the impact bending strength  were reduced by both resins, but in a varying extent, where the N-methylol melamine formaldehyde endured less reduction than 1,3-dimethylol-4,5-dihydroxyethyleneurea resin. In the latter, reduction up to 60% can take place.- In the lumen fill modification: tetra-alkoxysilane  has no effect in the mechanical properties. Although, a slight increase in shear strength parallel to the grain was found. Wax specimens have shown a slight increase in bending strength, compression, tensile and shear strength as well as in the absorption energy capacity

    Dynamic and static mechanical properties of eucalyptus nitens thermally modified in an open and closed reactor system

    Get PDF
    Eucalyptus nitens is a fast growing plantation species that has a good acclimation in Chile. It is commonly used for pulp and paper, but there is a growing market for solid wood products made from this species and an interest on producing high quality material. Thermal modification technology have been used to obtain high quality product out of fast growing plantation species. In this study we modified Eucalyptus nitens to analyse the influences of the process conditions and evaluated its mechanical properties under several process conditions. The material was modified in a closed system under elevated pressure and controlled relative humidity (30 and 100% relative humidity) at temperatures between 150 and 170°C, and in an open system with a standard thermal modification procedure between 160 and 230°C. Modulus of elasticity, modulus of rupture, deflection and work in bending (in elastic and inelastic proportions) and the resistance to impact milling in high energy multiple impact tests were determined. Mass loss after each modification was also measured and correlated with the mechanical properties. Anatomical properties of selected modifications were analysed. There were no significant differences between open and closed system modifications in both mechanical and anatomical properties
    corecore